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|dentifiability with sparsity

Decompose a low-rank matrix with known coefficient sparsity.

M= UV,
rank(M) = rank(U) = r,
IV o< k=r—s<rVj.

Many existing theoretical results (see, e.g., [Gribonval 16]) and algorithms
(Dictionary Learning). But:

X Not many results specific to the low-rank case
X Only two deterministic identifiability results [Elad 06, Georgiev 05]
X Not much in the NMF case except /1 regularization



|dentifiability with sparsity: example

Example: p =3, r = 3, s=sparsity=1, n=09.

e data points
o first decomposition
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Example: p =3, r = 3, s=sparsity=1, n=09.

e data points
o first decomposition
o second decomposition




|dentifiability results

Theorem

Let M = UV where rank(U) = rank(M) = r and each column of V has at
least s zeros. The factorization (U, V) is essentially unique if on each

hyperplane spanned by all but one column of U, there are {@J +1
data points with spark r.

[CG19] J.E. Cohen and N. Gillis, " Identifiability of Complete Dictionary Learning”,
SIAM J. on Mathematics of Data Science 1 (3), pp. 518-536, 2019.



|dentifiability results

Theorem

Let M = UV where rank(U) = rank(M) = r and each column of V has at
least s zeros. The factorization (U, V) is essentially unique if on each

hyperplane spanned by all but one column of U, there are {@J +1
data points with spark r.

For s = 1, this requires r3 — 2r? 4 r data points and it is tight up to
the constant r (counter examples for any n = r® — 2r?).

[CG19] J.E. Cohen and N. Gillis, " Identifiability of Complete Dictionary Learning”,
SIAM J. on Mathematics of Data Science 1 (3), pp. 518-536, 2019.



|dentifiability results

Theorem

Let M = UV where rank(U) = rank(M) = r and each column of V has at
least s zeros. The factorization (U, V) is essentially unique if on each

hyperplane spanned by all but one column of U, there are {@J +1
data points with spark r.

For s = 1, this requires r3 — 2r? 4 r data points and it is tight up to
the constant r (counter examples for any n = r® — 2r?).

For s = r — 1, this requires r data points and it is tight (one on each
intersection of r — 1 hyperplanes).

[CG19] J.E. Cohen and N. Gillis, " Identifiability of Complete Dictionary Learning”,
SIAM J. on Mathematics of Data Science 1 (3), pp. 518-536, 2019.



|dentifiability results

Theorem

Let M = UV where rank(U) = rank(M) = r and each column of V has at
least s zeros. The factorization (U, V) is essentially unique if on each

hyperplane spanned by all but one column of U, there are {@J +1
data points with spark r.

For s = 1, this requires r3 — 2r? 4 r data points and it is tight up to
the constant r (counter examples for any n = r® — 2r?).

For s = r — 1, this requires r data points and it is tight (one on each
intersection of r — 1 hyperplanes).

It is tight up to constant factors for any s = 3r for any fixed constant

8.

[CG19] J.E. Cohen and N. Gillis, " Identifiability of Complete Dictionary Learning”,
SIAM J. on Mathematics of Data Science 1 (3), pp. 518-536, 2019.



|dentifiability results

Theorem
Let M = UV where rank(U) = rank(M) = r and each column of V has at
least s zeros. The factorization (U, V) is essentially unique if on each

hyperplane spanned by all but one column of U, there are {@J +1
data points with spark r.

For s = 1, this requires r3 — 2r? 4 r data points and it is tight up to
the constant r (counter examples for any n = r® — 2r?).

For s = r — 1, this requires r data points and it is tight (one on each
intersection of r — 1 hyperplanes).

It is tight up to constant factors for any s = 3r for any fixed constant

8.

Nonnegativity not taken into account in the analysis, it helps both in
theory and in practice: further work.

[CG19] J.E. Cohen and N. Gillis, " Identifiability of Complete Dictionary Learning”,
SIAM J. on Mathematics of Data Science 1 (3), pp. 518-536, 2019.
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Sparsity in action

Spectral unmixing, R =6,s =4
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v Sparsity is another way to obtain identifiability for matrix
decompositions.

X Hard combinatorial problems to solve. ..
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Pierre DH is exploring deep NMF M =~ UVi V5 ... V).
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What are we doing in Mons?

Nicolas N is exploring sparse separable NMF
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What are we doing in Mons?

Andersen is exploring unimodal NMF
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What are we doing in Mons?

Christophe is exploring linear-quadratic NMF

QO A

Linear-quadratic (LQ) model
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What are we doing in Mons?

Valentin is exploring constrained S-divergence NMF




What are we doing in Mons?

Francois is exploring £1 symNMF for document classification

| Data ‘ SymNMF ‘ ODsymNMF-/y | ODsymNMF-£; ‘

classic 63.67 63.67 66.33
ohscal 43.24 43.16 38.08
hitech 49.07 49.24 52.19
reviews 49.37 49.55 70.07
sports 51.46 51.41 48.81
lal 49.16 48.81 40.61
la2 48.94 48.62 39.45
kib 57.18 58.68 66.45
trll 59.66 59.90 51.21
tr23 35.29 35.29 36.76
trdl 46.70 47.15 47.04
trdh 42.90 42.61 43.04

Table 4: Accuracy (in %) for each data set. The bold values are the best of each line.



What are we doing in Mons?

Maryam is exploring facet-based algorithms
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What are we doing in Mons?

Tim is exploring identifiability conditions

separability

o Columns of H
—conv(H)

SSC facet-based condition




What are we doing in Mons?

Hien is developing a general class of highly efficient algorithms for
non-convex non-smooth optimization

Algorithm 1 TITAN with cyclic update to solve Problem (1)

Input: Choose 271, 2” € X (7! can be chosen equal to z°).
Output: z* that approximately solves (1).

1: for k=0,1,...do

2 Set zF0 = z*

3 for i=1,....,mdo
4

Choose a block i surrogate function u; of f and an extrapolation GF(z¥, ;ci."fl).
5: Update block ¢ by
k, . i ok ke
(3) ;e arg11;1r1n-u,(33h:ri‘ ' 1) - {gi‘(ri‘,lf 1),:01'} + gi(zi),
N

ki _  ki—1 g L
and set ;" = z; for all j # i.
6:  end for
7. Set zFT! = zFm,
8: end for




Thank you for your attention!

Code and papers available from
https://sites.google.com/site/nicolasgillis
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