
Nonnegative Matrix Factorization



The setup – Dimensionality reduction for data analysis

Given a set of n data points mj (j = 1, 2, . . . , n), we would like to
understand the underlying structure of this data.

A fundamental and powerful tool is linear dimensionality reduction:
find a set of r basis vectors uk (1 ≤ k ≤ r) so that for all j

for some weights vkj .

This is equivalent to the low-rank approximation of matrix M:

M = [m1 m2 . . . mn] ≈ [u1 u2 . . . ur ] [v1 v2 . . . vn] = UV .
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Constrained Low-Rank Matrix Approximations

How to measure the error ||M − UV ||?
Ex. PCA/truncated SVD use ||X || = ||X ||2F =

∑
i ,j X

2
ij .

What constraints should the factors U ∈ ΩU and V ∈ ΩV satisfy?

Ex. PCA has no constraints, k-means a single ’1’ per column of V .

Goal of this presentation: show some applications, present several
models and discuss some algorithms for NMF.
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Nonnegative Matrix Factorization (NMF)

Given a matrix M ∈ Rp×n
+ and a factorization rank r � min(p, n), find

U ∈ Rp×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i ,j

(M − UV )2
ij . (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k , i)︸ ︷︷ ︸
≥0

for all i .

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation).
→ Many applications. image processing, text mining, hyperspectral
unmixing, community detection, clustering, etc.
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Application 1: Blind hyperspectral unmixing

Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels.
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Linear mixing model
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Linear mixing model
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Application 1: Blind hyperspectral unmixing with NMF

Basis elements allow to recover the different endmembers: U ≥ 0;

Abundances of the endmembers in each pixel: V ≥ 0.
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Urban hyperspectral image
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Urban hyperspectral image

Figure: Decomposition of the Urban dataset.
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Application 2: topic recovery and document classification

Basis elements allow to recover the different topics;

Weights allow to assign each text to its corresponding topics.

10
/
/



Application 2: topic recovery and document classification

Basis elements allow to recover the different topics;

Weights allow to assign each text to its corresponding topics.

10
/
/



Application 2: topic recovery and document classification

Basis elements allow to recover the different topics;

Weights allow to assign each text to its corresponding topics.

10
/
/



Application 3: feature extraction and classification

The basis elements extract facial features such as eyes, nose and lips.
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Application 4: audio source separation

doudou_melody.webm
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Application 5: community detection

Mi ,j = exp (−c‖xi − xj‖2) is an entrywise positive and PSD matrix.
Consider the symmetric NMF model M ≈ UU> where U ≥ 0.
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Application 6: recommender systems

In some cases, some entries are missing/unknown.

For example, we would like to predict how much someone is going to like a
movie based on its movie preferences (e.g., 1 to 5 stars) :

Users

Movies



2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3



Huge potential in electronic commercial sites (movies, books, music, . . . ).
Good recommendations will increase the propensity of a purchase.
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Low-rank matrix approximations

The behavior of users is modeled using linear combination of ’feature’
users (related to age, sex, culture, etc.)

M(:, j)︸ ︷︷ ︸
user j

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
feature user k

V (k , j)︸ ︷︷ ︸
weights

Or equivalently, movies ratings are modeled as linear combinations of
’feature’ movies (related to the genres - child oriented, serious vs. escapist,
thriller, romantic, actors, etc.).

M(i , :)︸ ︷︷ ︸
movie i

≈
r∑

k=1

U(i , k)︸ ︷︷ ︸
weights

V (k , :)︸ ︷︷ ︸
genre k
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For example, using a rank-2 factorization on the Netflix dataset,
female vs. male and serious vs. escapist behaviors were extracted.

Koren, Bell, Volinsky, Matrix Factorization Techniques for Recommender Systems, 2009.
Winners of the Netflix prize 1,000,000$.
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NMF is easily interpretable

X =


2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3

 ≈


1.6 0.9 2.2
0.9 2.3 0.4
0.2 0.8 5.0
5.0 0.8 0.4
1.4 5.0 0.0
0.4 3.3 2.3


 1.0 0.7 0.0 0.4 0.3

0.1 0.0 0.4 1.1 0.7
0.2 0.8 0.7 0.0 0.2



=


2.0 3.0 2.0 1.7 1.5
1.1 1.0 1.2 3.0 2.0
1.0 4.2 4.0 1.0 1.6
5.0 4.0 0.6 3.0 2.0
1.6 1.0 2.0 6.3 4.0
1.0 2.2 3.0 4.0 3.0

 ,
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Application 7: community detection

Dataset of 101 animals with 17 characteristics, including:

Example from http://archive.ics.uci.edu/dataset/111/zoo.
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