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The setup — Dimensionality reduction for data analysis

m Given a set of n data points m; (j = 1,2,...,n), we would like to
understand the underlying structure of this data.
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The setup — Dimensionality reduction for data analysis

m Given a set of n data points m; (j = 1,2,...,n), we would like to
understand the underlying structure of this data.

m A fundamental and powerful tool is linear dimensionality reduction:
find a set of r basis vectors vy (1 < k < r) so that for all j

for some weights v;.

x data points

m This is equivalent to the low-rank approximation of matrix M:

I\/I:[mlmz...

mp| = [truz ... u][viva ...

va] = UV.



Constrained Low-Rank Matrix Approximations
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m What constraints should the factors U € Q and V € Qy satisfy?

Ex. PCA has no constraints, k-means a single '1" per column of V.
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m How to measure the error ||[M — UV/||?
Ex. PCA/truncated SVD use || X|| = || X]|2 = >0l Xu2

m What constraints should the factors U € Q and V € Qy satisfy?

Ex. PCA has no constraints, k-means a single '1" per column of V.

. show some applications, present several
models and discuss some algorithms for NMF.



Nonnegative Matrix Factorization (NMF)

Given a matrix M € Rixn and a factorization rank r < min(p, n), find
U € RP*"and V € R™" such that
min_[|M— UV|[z => (M- UV). (NMF)

U>0,v>0 —
I7./



Nonnegative Matrix Factorization (NMF)

Given a matrix M € Rixn and a factorization rank r < min(p, n), find
U € RP*"and V € R™" such that

i — UV = —UV)2
Uznal‘r)ZOHM Uv|z ;(M UV)3.

(NMF)

NMEF is a linear dimensionality reduction technique for nonnegative data

,
M(:,i) = > U(, k) V(k,i)  foralli.
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Nonnegative Matrix Factorization (NMF)

Given a matrix M € RP*" and a factorization rank r < min(p, n), find
U € RP*"and V € R™" such that

i — UV = —UV)2
S IM — UV|% ,ZJ;(M UV)3. (NMF)
r
M(:, i) ~ UG, k) V(k,i)  forall i,
~——

Why nonnegativity?
— Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation).

— Many applications. image processing, text mining, hyperspectral
unmixing, community detection, clustering, etc.



Application 1: Blind hyperspectral unmixing
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Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.



Application 1: Blind hyperspectral unmixing

Road

= -
o o
(=] (=]

Grass

Figure: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels.



Linear mixing model
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Linear mixing model
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Application 1: Blind hyperspectral unmixing with NMF
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m Basis elements allow to recover the different endmembers: U > 0;



Application 1: Blind hyperspectral unmixing with NMF
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m Basis elements allow to recover the different endmembers: U > 0;

m Abundances of the endmembers in each pixel: V > 0.



Urban hyperspectral image
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Urban hyperspectral image

M. j) ~ U, k) V(. j)
N——

spectral signature
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Figure: Decomposition of the Urban dataset.
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Urban hyperspectral image

M, j) ~ UG, k) V(k,j)
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Figure: Decomposition of the Urban dataset.



Application 2: topic recovery and document classification
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Application 2: topic recovery and document classification
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Application 2: topic recovery and document classification
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Sets of words found simultaneously in different texts

m Basis elements allow to recover the different topics;

m Weights allow to assign each text to its corresponding topics.
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Application 3: feature extraction and classification
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Application 3: feature extraction and classification
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The basis elements extract facial features such as eyes, nose and lips.
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Application 4: audio source separation
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doudou_melody.webm

Application 4: audio source separation
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doudou_melody.webm

Application 4: audio source separation
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Application 5: community detection

M; j = exp (—c||x; — x;||?) is an entrywise positive and PSD matrix.
Consider the symmetric NMF model M ~ UUT where U > 0.
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M; j = exp (—c||x; — x;||?) is an entrywise positive and PSD matrix.
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Application 6: recommender systems

In some cases, some entries are missing/unknown.

For example, we would like to predict how much someone is going to like a
movie based on its movie preferences (e.g., 1 to 5 stars) :

Users
2 3 2 7 77
71 7 3 2
. 1 7 4 1 7
Movies 5 4 7 3 2
71 2 7 4
| 1 7 3 4 3 |
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Application 6: recommender systems

In some cases, some entries are missing/unknown.

For example, we would like to predict how much someone is going to like a
movie based on its movie preferences (e.g., 1 to 5 stars) :

Users
2 3 2 7 77
71 7 3 2
. 1 7?2 4 17
Movies 54 7 3 2
71 2 7 4
|1 7 3 4 3|

Huge potential in electronic commercial sites (movies, books, music, ... ).
Good recommendations will increase the propensity of a purchase.
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Low-rank matrix approximations

The behavior of users is modeled using linear combination of 'feature’
users (related to age, sex, culture, etc.)

k=1

feature user k weights
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Low-rank matrix approximations

The behavior of users is modeled using linear combination of 'feature’
users (related to age, sex, culture, etc.)

M(Gj) ~ Y, UK V(k))
k=1

user j feature user k weights
Or equivalently, movies ratings are modeled as linear combinations of

'feature’ movies (related to the - child oriented, serious vs. escapist,
thriller, romantic, actors, etc.).
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For example, using a rank-2 factorization on the Netflix dataset,
female vs. male and serious vs. escapist behaviors were extracted.

Serious
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Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Koren, Bell, Volinsky, Matrix Factorization Techniques for Recommender Systems, 2009.
Winners of the Netflix prize 1,000,000%.
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NMF is easily interpretable
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Application 7: community detection

Dataset of 101 animals with 17 characteristics, including:

hair  feathers eggs aquatic milk

bass 0 0 1 1 0
bear 1 0 0 0 1
chicken 0 1 1 0 0
gorilla 1 0 0 0 1
ostrich 0 1 1 0 0
seahorse 0 0 1 1 0

Example from http://archive.ics.uci.edu/dataset/111/zoo.
19
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Application 7: community detection

Dataset of 101 animals with 17 characteristics, including:

hair  feathers eggs aquatic milk

bass 0 0 1 1 0 100

bear 1 0 0 0 1 0|01 0|1
chicken 0 1 1 0 0 =]0([1]0]|o 1|1
gorilla 1 0 0 0 1 o0 |1 1010 1
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Application 7: community detection

Dataset of 101 animals with 17 characteristics, including:

Example from http://archive.ics.uci.edu/dataset/111/zoo0.
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